Improving Effluent Water Quality of Rubber Liquid Waste Treatment using Ceramic Membranes based on Bentonite, Zeolite and Iron Additives

Rizka Mayasari
Chemical Engineering
Lampung University
Lampung, Indonesia
rizka.mayasari@eng.unila.ac.id

Miftahul Djana
Chemical Engineering
Lampung University
Lampung, Indonesia
miftahul.djana@eng.unila.ac.id

Abstract—The effluent water quality from rubber liquid waste treatment has the potential to be recycled as raw water for clean water. The purpose of this study was to examine the most effective composition of ceramic membranes from the composition of bentonite, zeolite, and iron additives and to determine the efficiency of reducing the concentration of TDS, T- Coliform, and LAS parameters according to the quality standard in the Ministry of Health Regulation Republic of Indonesia Number 32 of 2017. The stages of this research are the manufacture of ceramic filters, the filtration process using bentonite and zeolite-based ceramic membranes with iron additives. Variation of filtration operating time for 5 hours with sampling once every hour using an up-flow system. The results showed that the four variations in the composition of ceramic membranes had been effective in improving effluent water quality. The highest efficiency for decreasing TDS parameters was found in the CF4 membrane-type at the third hour of operation as much 23.64%, the T-Coliform parameter was found in the CF4 membrane-type at the fifth hour of operation as much 64%, and LAS parameter in all variations of tines in various operating time with optimal reduction efficiency above 99%.

Keywords—bentonite, ceramic membranes, effluent water quality, iron additives, zeolite

I. INTRODUCTION

Various methods to reduce rubber waste have been carried out by chlorination, adsorption, chemical coagulation, and membranes filtration. Rubber industry wastewater treatment by adsorption process using a combination of bentonite and zeolite adsorbents [6], that were carried out can reduce contaminants contained in the rubber industrial waste water and the permeate has met the quality standards of rubber industry wastewater which have been regulated in the Minister of Environment and Forestry Regulation Republic of Indonesia Number 68 of 2016. However, the processed water from the rubber liquid waste cannot be used as clean water. Further processing is needed to improve its quality by lowering parameters that exceed the quality standard of clean water, so that it is more appropriate to use raw water for clean water according to the quality standard in the Minister of Health Regulation Republic of Indonesia Number 32 of 2017 concerning Environmental Health Quality Standards and Water Health Requirements for Sanitary Hygiene Needs. Therefore, in this study, a process development from previous research will be carried out with the achievement of improving effluent water quality from rubber liquid waste treatment through the application of ceramic filters so that it meets the quality standard in the Minister of Health Regulation Republic of Indonesia Number 32 of 2017 concerning Environmental Health Quality Standards and Water Health Requirements for Sanitary Hygiene Needs. The ceramic filter designed in this study is a type of Microfiltration or Ultrafiltration from bentonite and zeolite with the consideration that these two materials are widely available in Indonesia so that the possibility of commercial applications will be wider. Ceramic membranes or porous ceramics as waste water filters have good performance, one of which is permeability. It is also known that membrane technology is the most widely used technology to overcome the waste problem because it does not require too much energy and does not use energy in the form of heat so that the components in it can be maintained. Several inorganic filters have been widely used, such as clay-based ceramic membranes, zeolite and sawdust [1], ceramic filters from clay and rice husks [3], cult-intermediate filters and polyethylene glycol (PEG) [11], silica nanofiltration membrane with PEG [10], clay-based ceramic filter and natural zeolite [8], clay filter and PEG as a pore maker [7]. Inorganic materials that have the potential to be used in ceramic membranes in this study are bentonite, and zeolite because they have a cavity or pore structure that is selective in the filtration process, is resistant to heat and has good absorption mechanism strength, and is resistant to extreme chemical environments. Meanwhile, ceramic media is made with the purpose of fast filtration with a simple operation, does not require a large space, and obtains good quality permeability. However, one of the weaknesses encountered is the nature of the membrane which is fragile and easily broken (brittle). For this reason, in this study, the iron powder will be added to the process of making ceramic membranes to strengthen the ceramic structure.

This research is expected to provide benefits for all research circles and the wider community. This bentonite and zeolite based porous ceramic filter and iron powder additive can filter waste water and is a solution for building the porous ceramic industry which is material efficient, easy to manufacture, easy to use, easy to carry, cheap, very environmentally friendly. When it is no longer used, it can be easily disposed of into the environment without being processed. In line with the recommendation to develop a product neighborhood to order release depended on imports as well as anticipate the need for clean water in the future.
In addition, it also contributes positively to the advancement of science in the field of Chemical Engineering, especially Membrane Technology.

Based on the above description, the researcher researched improving effluent water quality from rubber liquid waste treatment by ceramic membranes based on bentonite and zeolite with iron powder additives according to the quality standard in the Minister of Health Regulation Republic of Indonesia Number 32 of 2017 concerning Environmental Health Quality Standards and Water Health Requirements for Sanitary Hygiene Needs, where this research is advanced processing of previous research and becomes an innovation in the rubber liquid waste treatment using the ceramic filter.

II. CERAMIC FILTER

Ceramic water filtration as explained by Agbo et al. [12] is an activity of making water to pass via a permeable ceramic material which is affordable in term of cost and also greatly reduces water-borne disease. Ceramic pot water filters over the years have been the most effective and efficient among several household water treatment. The concept of ceramic filtration method for the treatment of drinking water has existed for a while and has been utilized in different forms since olden times. Processing effluent WWTP Industrial Zone using dual filtration media with three variations of membrane composition tile (clay, sawdust and zeolite) [5] can reduce levels of parameters TDS and Detergents that have met quality standards but the value of the Total Coliform parameter can decrease significantly but has not been able to meet the quality standards according to the quality standard in the Minister of Health Regulation Republic of Indonesia Number 32 of 2017. Compared to the research of Sutrisno and Sari [13] regarding the reduction of total coliform in groundwater using ceramic membranes with a variable composition of 50% clay, 20% rice husks, and 30% zeolite, the efficiency of total coliform reduction was the highest of 95.83% which has met the water quality standards. Other research on the application of ceramic membranes to reduce levels of TDS in water effluent from industry with ceramic membrane composition consisting of 87.5% clay, rice husk 10% and 2.5% iron powder can reduce TDS levels with efficiency decreased by 16.75%. [8] The application of a ceramic filter made from a mixture of 77.5% clay, 20% rice husks, and 2.5% zeolite and 2.5% iron powder carried out by Nasir et.al., on treated wastewater from the laundry process can reduce levels of TDS, COD, BOD and LAS contained in the wastewater from the laundry process had the highest permeate flux, but the increased use of zeolite in the filter composition accelerated the occurrence of fouling.

Not all ceramics derived from clay but includes all non-metallic, and inorganic solid form. In general, ceramic compounds are more stable to heat (up to 1200°C, even up to 2000°C for engineering ceramics/oxide ceramics) and chemicals than the elements. Commonly used ceramic raw materials are feldspar, clay, quartz, kaolin, and water. The brittle, hard and rigid properties of ceramics are largely determined by their very complex crystal structure, chemical composition, and inherent minerals. [4]

Porous ceramics used as filters use high alumina material because alumina has advantages in strength, hardness, and resistance to pressure, heat, and chemicals [3]. Therefore, this research focuses to produce low-cost ceramic filter pots based on bentonite and zeolite clay with iron powder additives. More importantly, to show the efficiency of reducing concentration on the parameters of TDS, Total Coliform and Detergent of effluent water from rubber liquid waste treatment which refers to the clean water quality standard in the Minister of Health Regulation Republic of Indonesia Number 32 of 2017 concerning Environmental Health Quality Standards and Water Health Requirements for Sanitary Hygiene Needs.

A. Bentonite

Bentonite is a clay consisting mostly of montmorillonite with minerals such as quartz, calcite, dolomite, feldspars, and other minerals. Montmorillonite is part of the smectite group with a general chemical composition (Mg,Ca)O.Al$_2$O$_3$.5SiO$_2$.nH$_2$O. The mineral montmorillonite consists of very small particles that can only be known through studies using XRD (X-Ray Diffraction). Based on the content of hydrated aluminosilicate contained in bentonite, the bentonite can be divided into two groups, activated clay, is a clay that has a low bleaching power and Fuller's earth, is a clay that naturally has the ability to absorb dyes in oils, fats, and lubricants.

B. Zeolite

Zeolite is a porous tetrahydrate alumina silicate crystalline mineral that has a three-dimensional skeletal structure, formed by tetrahedral [SiO4]4- and [AlO4]5- which are connected to each other by oxygen atoms in such a way that they form an open three-dimensional framework containing channels. The channels and cavities in them are filled with metal ions, usually alkali or alkaline earth metals and freely moving water molecules. Zeolites have a hollow structure and usually these cavities are filled with water and exchangeable cations and have a certain pore size. Most of Indonesia's territory consists of volcanoes that have volcanic larvae that contain a lot of zeolite so that zeolite minerals in Indonesia are abundant. In principle, the use of natural zeolite is the same as synthetic mineral zeolite because the two types of zeolite have physical and chemical similarities, although they have some differences in physical and chemical properties. Many zeolites are found in nature, but these materials can also be synthesized under controlled conditions to produce cavities of very uniform size and shape. Most zeolites contain water molecules in their cavities, which serve as the mobile phase for the migration of charge balancing cations. This allows the zeolite to function as an ion exchange material (where one type of positive ion can easily be exchanged with another positive ion) and is the key to its ability to soften water. The second use of zeolite is obtained from the ease with which it is also able to adsorb small molecules.

III. MATERIAL AND METHODS

This research is a laboratory experimental scale where the design of the ceramic filter includes variations in the composition of the mixture and the amount of additives in the manufacture of the filter. This aims to determine the improvement effluent water quality from rubber liquid waste using a ceramic membranes, so that it can produce water quality that can be used as raw water for clean water.
A. Sample Collection and Preparation

The sample used in this study is effluent water that comes from rubber liquid waste treatment with an adsorption process using a filtration column that were carried out in previous studies. The materials used in this research are zeolite, bentonite and iron powder was collected from local manufacturers. The equipment used in this research include ceramic membrane unit, PVC pipe, ceramic membrane housing, filter housing, pump, flowmeter, pressure gauge, plastic tank, hose, water faucet and elbow.

B. Experimental Design

- Preliminary analysis of effluent water quality from rubber liquid waste treatment that exceeds for clean water according to the quality standard in the Minister of Health Regulation Republic of Indonesia Number 32 of 2017 concerning Environmental Health Quality Standards and Water Health Requirements for Sanitary Hygiene Needs.

- The ceramic filter is designed in the form of a tube and is made from a mixture of bentonite, zeolite, and an additive in the form of iron powder with the composition (72.5%:25%:2.5%) (67.5%:30%:2.5%), (70%:25%:5%) and (65%:30%:5%). The particle sizes of zeolite and iron powder used were 250 µm and 500 µm, respectively. The mixture of bentonite, zeolite and iron powder was stirred and homogenized with the addition of clean water and then molded into a mold made of gypsum, dried at room temperature for approximately 7 days. The mixture was sintered or heated at about 900°C for 12 hours. The dimensions of the filter are as follows: inner diameter of 4 cm, an outer diameter of 5 cm, thickness of 1 cm, and length of 25 cm. The filter housing is made of polyethylene with the following dimensions: an outer diameter of 9 cm, inner diameter of 8.5 cm, and height of 30 cm.

- Procedure of research are pumped into a pipe that is connected to three filtration pipes in which there are ceramic filter with different composition of ceramic membranes. The filtration process was carried out for 5 hours continuously with sampling every 1 hour for laboratory testing of the test parameters and measuring the volume of water from the ceramic membranes.

- The data obtained were analyzed descriptively in the form of tabulations, presented in the form of graphs and percentages and described in the form of narration. Determination of test parameters is carried out by analyzing wastewater treated water exceeds for clean water according to the quality standard in the Minister of Health Regulation Republic of Indonesia Number 32 of 2017 concerning Environmental Health Quality Standards and Water Health Requirements for Sanitary Hygiene Needs. From the preliminary analysis, it was found that the parameters of TDS, Detergent and Total Coliform still exceed the quality standard so that the improvement of the quality of wastewater treated with ceramic filters is carried out to reduce the levels of these parameters.

IV. RESULT AND DISCUSSION

Data obtained from observations entire series of experiments conducted by using ceramic membranes and analysis of parameters. The discussion includes the results of the activities carried out in research that improving effluent water quality from rubber liquid waste treatment by ceramic membranes based on bentonite and zeolite with iron powder additives. The data provided are analyzed and presented in tables and Figure. Based on the results of the calculation of the water pressure that can be accepted by the ceramic membrane and compared with the results of the compressive strength test of the ceramic membrane, the compressive test value of the ceramic membrane is still above the resulting water pressure value of 0.00952 N/mm². Ceramic membrane is able to accept water pressure without any leakage in the membrane because it has a compressive strength value that is greater than the value of water pressure. If the compressive strength test value of the ceramic membrane is below the calculated water pressure, it will cause the ceramic membrane to break.

A. Ceramic Membrane Analysis

Ceramic membrane analysis for effluent water quality from rubber liquid waste treatment carried out by varying the composition of the ceramic membrane. Comparison of ceramic membrane material composition is determined based on the percentage of the volume of material. The data on the results of ceramic membrane analysis are in the table below.

<table>
<thead>
<tr>
<th>Ceramic Filter code</th>
<th>bentonite by (wt)%</th>
<th>zeolite by (wt)%</th>
<th>iron powder by (wt)%</th>
<th>Screen size (mm)</th>
<th>Thickness (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF1</td>
<td>72.5</td>
<td>25</td>
<td>2.5</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>CF2</td>
<td>67.5</td>
<td>30</td>
<td>2.5</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>CF3</td>
<td>70</td>
<td>25</td>
<td>2.5</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>CF4</td>
<td>65</td>
<td>30</td>
<td>5</td>
<td>0.5</td>
<td>1</td>
</tr>
</tbody>
</table>

B. Filtrate Volume

Measurement of the volume of filtered water is used to determine the ability of ceramic membranes to filter processed water samples. The ceramic membrane types of CF 1 produces the largest volume of filtered water, which is 63 L while the ceramic membrane types of CF4 produces the lowest volume of filtration, which is 46 L. Seen in Figure 1, based on the filtration time interval, the volume of water produced is decreasing. This shows that the ability of the ceramic membrane to filter water is decreasing and producing less filtration water. The decrease that occurs is due to the presence of metal deposits and microorganisms that inhibit the rate of water filtration so that at a certain time there is a saturation process. When the filtration discharge does not meet the needs, the ceramic membrane can be activated again. Based on the ratio of the composition of the materials used, ceramic membranes with composition of bentonite as much as 72.5% have a better compressive strength than the others so that it affects the volume of filtered water produced.
C. Flux Permeate Analysis

Figure 2 shows that the mixture of bentonite, zeolite and iron powder each resulted in a change in flux. The smaller the particle size of the material, the smaller the flux in the ceramic. Small pores can only drain a little water because of the density of the pore space, thus the flux value is also small in the same area and time interval. That way the value of the flux is also small at the same area and time interval. In Figure 2 it can be seen that the value of the effluent flux with time, where in the initial 60 minutes the flux value changed, but after that the flux value showed an almost constant value. This decrease in water flux is caused by the blockage of the membrane pores by micro particulates and the denser the structure of the membrane. CF4 ceramic membrane type with a higher number of zeolite and iron powder particles gave a relatively better permeate flux. From the data in Figure 2, where the more zeolite used, the greater the flux produced. This is consistent with the theory of filtration, the liquid that is inserted into a porous membrane, the smaller the pores of the membrane, the filtrate down also getting slower, whereas the larger pores of the membrane, the water coming down faster.

D. Parameter Analysis

The following is the decrease in levels of TDS, Total Coliform and Detergent parameters after processing using ceramic membrane filtration media, which is presented in the graph below.

The effect of bentonite and zeolite with the addition of iron powder to the Total Dissolved Solid (TDS) showed a decrease in the effluent water quality from rubber liquid waste treatment, where the total dissolved solids for the initial sample was 1025 mg/L. Then after being filtered with variations of this membrane, there is a decrease so that according to the quality standard in the Minister of Health Regulation Republic of Indonesia Number 32 of 2017 concerning Environmental Health Quality Standards and Water Health Requirements for Sanitary Hygiene Needs.

The highest efficiency of reducing TDS levels was found in the 3rd hour sampling CF4 membrane, which was 845 mg/L or 23.46%. In the early minutes, which is the first filtered water out until the first hour of processing, the TDS level in the membrane filtered water increased. A significant increase in efficiency occurred at the 2nd hour for each type of membrane.

The highest total coliform reduction efficiency was found in the CF4 membrane type and sampling at 5 hours was 64%. Meanwhile, the lowest total coliform reduction efficiency was found in the CF1 membrane type, which was 57%. In the first minute to the second hour of processing, the Total Coliform content in the treated water of the four membrane variations experienced a significant increase in efficiency. The decrease in Coliform concentration using ceramic membranes also occurs due to a filtering and absorption process where the organic materials contained in the wastewater are filtered and absorbed by the ceramic membrane with strong pressure causing organic materials to stick to the membrane wall, this happens because Coliform bacteria which has a size of 0.5–1 micron can be filtered by a ceramic membrane which has smaller pores than Coliform bacteria.

The results of the analysis of the permeate produced by each filter with various compositions of bentonite, zeolite and iron powder can be seen in the figure 5.
It can be seen that improving effluent water quality from rubber liquid waste treatment by ceramic membranes based on bentonite and zeolite with iron powder additives is quite effective in reducing TDS, T-Coliform and LAS according to the quality standard in the Minister of Health Regulation Republic of Indonesia Number 32 of 2017 concerning Environmental Health Quality Standards and Water Health Requirements for Sanitary Hygiene Needs. However, ceramic filters with a fairly good composition used are 65% bentonite, 30% zeolite and 5% iron powder. This can be seen from the filter’s ability to produce permeate rate, and the ability to reduce TDS, T-Coliform and LAS which is quite high. CF4 ceramic membrane type with a higher number of zeolite and iron powder particles gave a relatively better permeate flux. The composition of zeolite particles contained in ceramic membranes can cause the adsorption process of metal ions or detergent residues containing surfactants both anions and cations so that the permeate flux will decrease over time. Linear Alkylbenzene Sulphonate is an anionic surfactant which contains Na⁺ ion group in its molecular structure. Residue of the surfactant will interact hydrophobically and electrostatically with the zeolite contained in the ceramic filter used.

V. CONCLUSION

Based on the results of the study, it can be concluded that the effect of composition on the manufacture of ceramic membranes as a filter media for effluent water quality from rubber liquid waste treatment is very effective in removing particles in the water. Variations in the composition of ceramic membranes CF1, CF2, CF3 and CF4 have been effective in improving effluent water quality from rubber liquid waste treatment according to the quality standard in the Minister of Health Regulation Republic of Indonesia Number 32 of 2017 concerning Environmental Health Quality Standards and Water Health Requirements for Sanitary Hygiene Needs for TDS and Detergent parameters. Meanwhile, the Total Coliform parameter is still not able to meet the quality standards. The greater the composition of bentonite, zeolite and iron powder used, the greater the flux produced and the better the percentage reduction in TDS, T-

ACKNOWLEDGMENT

The author would like to thank the DIPA BLU, University of Lampung, which has funded this research.

REFERENCES

This License to Publish must be signed and returned to the Proceedings Editor before the manuscript can be published. If you have questions about how to submit the form, please contact the AIP Publishing Conference Proceedings office (conpro@ap.org). For questions regarding the copyright terms and conditions of this License, please contact AIP Publishing’s Office of Rights and Permissions, 1305 Walt Whitman Road, Suite 300, Melville, NY 11747-4300 USA; Phone 516-576-2268; Email: rights@ap.org.

Article Title (“Work”):

“Improving Effluent Water Quality of Rubber Liquid Waste Treatment using Ceramic Membranes based on Bentonite, Zeolite and Iron Additives”

(please indicate the final title of the work. any substantive changes made to the title after acceptance of the work may require the completion of a new agreement)

All Author(s):

Rizka Mayasari and Mithauli Djana

(please list all the authors' names in order as they will appear in the work. All listed authors must be fully deserving of authorship and no such authors should be omitted. For large groups of authors, attach a separate list to this form.)

Title of Conference:
The 2nd Universitas Lampung International Conference on Science, Technology and Environment

Name(s) of Editor(s): Universitas Lampung

All Copyright Owner(s), if not Author(s):

(Please list all copyright owner(s) by name. In the case of a work made for hire, the employer(s) or commissioning party(ies) are the copyright owner(s). For large groups of copyright owners, attach a separate list to this form.)

Copyright Ownership and Grant of Rights

For the purposes of this license, the “work” consists of all content within the article itself and made available as part of the article, including but not limited to the abstract, tables, figures, graphs, images, and multimedia files, as well as any subsequent errata. “Supplementary Material” consists of material that is associated with the article but linked to or accessed separately (available electronically only), including but not limited to data sets and any additional files.

This Agreement is an Exclusive License to Publish not a Transfer of Copyright. Copyright to the Work remains with the Author(s) or, in the case of a work made for hire, with the Author(s)’ employer(s). AIP Publishing LLC shall own and have the right to register its name the copyright to the proceedings issue or any other collective work in which the work is included. Any rights granted under this License are contingent upon acceptance of the Work for publication by AIP Publishing. If for any reason and at its own discretion AIP Publishing decides not to publish the Work, this License is considered void.

Each Copyright Owner hereby grants to AIP Publishing LLC the following irrevocable rights for the full-term of United States and foreign copyrights (including any extensions):

1. The exclusive right and license to publish, reproduce, distribute, transmit, display, store, translate, edit, adapt, and create derivative works from the Work (in whole or in part) throughout the world in all formats and media whether now known or later developed, and the nonexclusive right and license to do the same with the Supplementary Material.
2. The right for AIP Publishing to freely transfer and/or sublicense any or all of the exclusive rights listed in #1 above. Sublicensing includes the right to authorize requests for reuse of the Work by third parties.
3. The right for AIP Publishing to take whatever steps it considers necessary to protect and enforce, at its own expense, the exclusive rights granted herein against third parties.

Author Rights and Permitted Uses

Subject to the rights herein granted to AIP Publishing, each Copyright Owner retains ownership of copyright and all other proprietary rights such as patent rights in the Work.

Each Copyright Owner retains the following nonexclusive rights to use the Work, without obtaining permission from AIP Publishing, in keeping with professional publication ethics and provided clear credit is given to its first publication in an AIP Publishing proceeding. Any reuse must include a full credit line acknowledging AIP Publishing’s publication and a link to the Version of Record (VOR) on AIP Publishing’s site.

Each Copyright Owner may:

1. Reprint portions of the work (excerpts, figures, tables) in future works created by the Author, in keeping with professional publication ethics.
2. Post the Accepted Manuscript (AM) to their personal web page or their employer’s web page immediately after acceptance by AIP Publishing.
3. Deposit the AM in an institutional or funder-designated repository immediately after acceptance by AIP Publishing.
4. Use the AM for posting within scientific collaboration networks (SCNs). For a detailed description of our policy on posting to SCNs, please see our Web Posting Guidelines (https://publishing.ap.org/author/web-posting-guidelines).
5. Reprint the Version of Record (VOR) in print collections written by the Author, or in the Author’s thesis or dissertation. It is understood and agreed that the thesis or dissertation may be made available electronically on the university’s site or in its repository and that copies may be offered for sale on demand.
6. Reproduce copies of the VOR for courses taught by the Author or offered at the institution where the Author is employed, provided no fee is charged for access to the Work.
7. Use the VOR for internal training and noncommercial business purposes by the Author’s employer.
8. Use the VOR in oral presentations made by the Author, such as at conferences, meetings, seminars, etc., provided those receiving copies are informed that they may not further copy or distribute the Work.
9. Distribute the VOR to colleagues for noncommercial scholarly use, provided those receiving copies are informed that they may not further copy or distribute the Work.
10. Post the VOR to their personal web page or their employer’s web page 12 months after publication by AIP Publishing.
11. Deposit the VOR in an institutional or funder-designated repository 12 months after publication by AIP Publishing.
12. Update a prior posting with the VOR on a noncommercial server such as arXiv, 12 months after publication by AIP Publishing.

Author Warranties

Each Author and Copyright Owner represents and warrants to AIP Publishing the following:

1. The Work is the original independent creation of each Author and does not infringe any copyright or violate any other right of any third party.
2. The Work has not been previously published and is not being considered for publication elsewhere in any form, except as a preprint on a noncommercial server such as arXiv, or in a thesis or dissertation.
3. Written permission has been obtained for any material used from other sources and copies of the permission grants have been supplied to AIP Publishing to be included in the manuscript.
4. All third-party material for which permission has been obtained has been properly credited within the manuscript.
5. In the event that the Author is subject to university open access policies or other institutional restrictions that conflict with any of the rights or provisions of this License, such Author has obtained the necessary waiver from his or her university or institution.

This License must be signed by the Author(s) and, in the case of a work made for hire, also by the Copyright Owners. One Author/Copyright Owner may sign on behalf of all the contributors/owners only if all have authorized the signing, approved of the License, and agreed to be bound by it. The signing Author and, in the case of a work made for hire, the signing Copyright Owner warrants that he/she has full authority to enter into this License and to make the grants this License contains.

1. The Author must please sign here (except if an Author is a U.S. Government employee, then please sign under #3 below):

Author(s) Signature: Rizka Mayasari
Print Name: September 30, 2021

2. The Copyright Owner (if different from the Author) must please sign here:

Name of Copyright Owner: Authorized Signature and Title
Date

3. If an Author is a U.S. Government employee, such Author must please sign below.

The signing Author certifies that the Work was written as part of his/her official duties and is therefore not eligible for copyright protection in the United States.

Name of U.S. Government Institution (e.g., Naval Research Laboratory, NIST)

Author Signature: Print Name
Date

PLEASE NOTE: NATIONAL LABORATORIES THAT ARE SPONSORED BY U.S. GOVERNMENT AGENCIES BUT ARE INDEPENDENTLY RUN ARE NOT CONSIDERED GOVERNMENT INSTITUTIONS. (For example, Argonne, Brookhaven, Lawrence Livermore, Sandia, and others.) Authors at these types of institutions should sign under #1 or #2 above.

If the Work was authored under a U.S. Government contract, and the U.S. Government wishes to retain for itself and others acting on its behalf, a paid-up, nonexclusive, irrevocable, worldwide license in the Work to reproduce, prepare derivative works from, distribute copies to the public, perform publicly, and display publicly, by or on behalf of the Government, please check the box below and add the relevant Contract numbers.

☐ [161] Contract #(s)
Accepted Manuscript (AM): The final version of an author’s manuscript that has been accepted for publication and incorporates all the editorial changes made to the manuscript after submission and peer review. The AM does not yet reflect any of the publisher’s enhancements to the work such as copyediting, pagination, and other standard formatting.

Commercial and noncommercial scholarly use: Noncommercial scholarly uses are those that further the research process for authors and researchers on an individual basis for their own personal purposes. They are author-to-author interactions meant for the exchange of ideas. Commercial uses fall outside the author-to-author exchange and include but are not limited to the copying or distribution of an article, either in hard copy form or electronically, for resale or licensing to a third party; posting of the AM or VOR of an article by a site or service where an access fee is charged or which is supported by commercial paid advertising or sponsorship; use by a for-profit entity for any type of promotional purpose. Commercial uses require the permission of AIP Publishing.

Embargo period: The period of time during which free access to the full text of an article is delayed.

Emplo yer’s web page: A web page on an employer’s site that highlights the accomplishments and research interests of the company’s employees, which usually includes their publications. (See also: Personal web page and Scholarly Collaboration Network).

Exclusive License to Publish: An exclusive license to publish is a written agreement in which the copyright owner gives the publisher exclusivity over certain inherent rights associated with the copyright in the work. Those rights include the right to reproduce the work, to distribute copies of the work, to perform and display the work publicly, and to authorize others to do the same. The publisher does not hold the copyright to the work, which continues to reside with the author. The terms of the AIP Publishing License to Publish encourage authors to make full use of their work and help them to comply with requirements imposed by employers, institutions, and funders.

Full Credit Line: AIP Publishing’s preferred format for a credit line is as follows (you will need to insert the specific citation information in place of the capital letters): “Reproduced from [FULL CITATION], with the permission of AIP Publishing.” A FULL CITATION would appear as: Journal abbreviation, volume number, article ID number or page number (year). For example: Appl. Phys. Lett. 107, 021102 (2015).

Institutional repository: A university or research institution’s digital collection of articles that have been authored by its staff and which are usually made publicly accessible. As authors are encouraged and sometimes required to include their published articles in their institution’s repository, the majority of publishers allow for deposit of the Accepted Manuscript for this purpose. AIP Publishing also allows for the VOR to be deposited 12 months after publication of the Work.

Journal editorial office: The contact point for authors concerning matters related to the publication of their manuscripts. Contact information for the journal editorial offices may be found on the journal websites under the “About” tab.

Linking to the Version of Record (VOR): To create a link to your article in an AIP Publishing journal or proceedings, you need to know the CrossRef digital object identifier (DOI). You can find the DOI on the article’s abstract page. For instructions on linking, please refer to our Web Posting Guidelines at https://publishing.aip.org/authors/web-posting-guidelines.

National Laboratories: National laboratories are sponsored and funded by the U.S. Government but have independent nonprofit affiliations and employ private sector resources. These institutions are classified as Federally Funded Research and Development Centers (FFRDCs). Authors working at FFRDCs are not considered U.S. Government employees for the purposes of copyright. The Master Government List of FFRDCs may be found at http://www.nsf.gov/statistics/ffrdclist/.

Personal web page: A web page that is hosted by the author or the author’s institution and is dedicated to the author’s personal research interests and publication history. An author’s profile page on a social media site or scholarly collaboration network site is not considered a personal web page. (See also: Scholarly Collaboration Network; Employer’s web page).

Peer X-Press: A web-based manuscript submission system by which authors submit their manuscripts to AIP Publishing for publication, communicate with the editorial offices, and track the status of their submissions. The Peer X-Press system provides a fully electronic means of completing the License to Publish. A hard copy of the Agreement will be supplied by the editorial office if the author is unable to complete the electronic version of the form. (Conference Proceedings authors will continue to submit their manuscripts and forms directly to the Conference Editors.)

Preprint: A version of an author’s manuscript intended for publication but that has not been peer reviewed and does not reflect any editorial input or publisher enhancements.

Professional Publication Ethics: AIP Publishing provides information on what it expects from authors in its “Statement of ethics and responsibilities of authors submitting to AIP Publishing journals” (http://publishing.aip.org/authors/ethics). AIP Publishing is also a member of the Committee on Publication Ethics (COPE) (http://publicationethics.org/), which provides numerous resources and guidelines for authors, editors, and publishers with regard to ethical standards and accepted practices in scientific publishing.

Scholarly Collaboration Network (SCN): Professional networking sites that facilitate collaboration among researchers as well as the sharing of data, results, and publications. SCNs include sites such as Academia.edu, ResearchGate, and Mendeley, among others.

Supplementary Material: Related material that has been judged by peer review as being relevant to the understanding of the article but that may be too lengthy or of too limited interest for inclusion in the article itself. Supplementary Material may include data tables or sets, appendixes, movie or audio clips, or other multimedia files.

U.S. Government employees: Authors working at Government organizations who author works as part of their official duties and who are not able to license rights to the Work, since no copyright exists. Government works are in the public domain within the United States.

Version of Record (VOR): The final published version of the article as it appears in the printed journal/proceedings or on the Scitation website. It incorporates all editorial input, is formatted in the publisher’s standard style, and is usually viewed in PDF form.

Waiver: A request made to a university or institution to exempt an article from its open-access policy requirements. For example, a conflict will exist with any policy that requires the author to grant a nonexclusive license to the university or institution that enables it to license the Work to others. In all such cases, the Author must obtain a waiver, which shall be included in the manuscript file.

Work: The “Work” is considered all the material that comprises the article, including but not limited to the abstract, tables, figures, images, multimedia files that are directly embedded within the text, and the text itself. The Work does not include the Supplementary Material (see Supplementary Material above).

Work Made for Hire: Under copyright law, a work prepared by an employee within the scope of employment, or a work that has been specially ordered or commissioned for which the parties have agreed in writing to consider as a Work Made for Hire. The hiring party or employer is considered the author and owner of the copyright, not the person who creates the work.
LETTER OF ACCEPTANCE

Dear Ms Rizka Mayasari, et al

Thank you for submitting your manuscript for presentation at The 2nd Universitas Lampung International Conference on Science, Technology and Environment (ULICoSTE) 2021, “Promoting Synergy Trought Collaborative Research in Science and Technology for Digital Transformatio” to be held online on August 27 - 28, 2021 at Bandar Lampung, Indonesia.

Your manuscript entitled: "Improving Effluent Water Quality Of Rubber Liquid Waste Treatment Using Ceramic Membranes Based On Bentonite, Zeolite And Iron Additives" has been peer-reviewed and accepted. Congratulations! Please be advised that your manuscript is recommended for publication in (International Conference Proceedings (AIP) - Indexed Scopus). For further information, please visit our official website at https://ulicoste.unila.ac.id/.

We look forward to seeing you at the Conference.

Kind regards,

ULICoSTE 2021 Committee

Website : https://ulicoste.unila.ac.id/
Email : ulicoste01@kpa.unila.ac.id
Contact Persons : https://wa.me/6281559678993 (Sofyan)
Contact Persons : https://wa.me/6282281853216 (Nur Hayati)
CERTIFICATE

Number: 4602/UN26.21/PM.01/2021

This is to certify that

RIZKA MAYASARI, S.T., M.T

has participated as a Presenter

https://ulicoste.unila.ac.id/